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This paper describes the theory and algorithm allowing one to tune a
multi-exciter system in order to obtain specified temporal and spatial structural
response properties. Considerable effort is being put upon the desire to overcome
practical difficulties and limitations as found in real-world systems. The main
application that was envisaged for this algorithm is the creation of travelling
vibration waves in structures. Such waves may be useful in testing and diagnostic
applications or in ultrasonic motors for generating motion. The proposed method
adaptively modifies a set of perturbations applied to the model so that an
increasing amount of information is extracted from the system. The algorithm
strives to overcome the following difficulties: (a) singular model inversion, (b) poor
signal to noise ratio, (c) feedback, and (d) certain types of non-linear behaviour.
High response levels, exciter–structure coupling and the inherent feedback existing
in electro-mechanical systems are demonstrated to cause singularity, poor signal
to noise levels and, to some extent, non-linear behaviour. These phenomena pose
some difficulties under operating conditions commonly encountered during
dynamic testing of structures. The tuning of the multi-shaker system is approached
in this work, as a non-linear optimisation problem where insight into the physical
behaviour is emphasised in choosing the algorithmic strategy. The system’s
unknown model is inverted in an implicit manner using an automatic orthogonal
and adaptive search direction. This adaptation uses the measured responses and
forces at each step in order to determine the direction of progression during the
tuning process. The non-linear behaviour of the exciters is compensated, in this
work, by identification of the high-order (Volterra-like) transfer functions. This
high-order model is then inverted allowing one to create a signal that cancels the
unwanted harmonics. The proposed approach is analytically shown to converge
and the necessary magnitude of perturbations to assure this convergence is
derived. A simple case study is used to illustrate the proposed method, while an
experimental verification and more examples can be found in a companion paper.
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1. INTRODUCTION

The simulation of real-world phenomena in a controlled laboratory experiment is
a very desirable goal. This goal is pursued in dynamic testing of structures, where
it is required to replicate the time-history of the force patterns being applied in
reality. Unfortunately, the exact generation of forcing functions can be very
difficult and usually one settles for being able to measure the actually applied
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forces. There are several applications which require precise specification of forces:
(a) selective excitation of the structural response for improving the quality of the
measured information [1]; (b) stimulating forward or backward whirl in a rotating
system [2]; (c) excitation of travelling and standing waves [3]; (d) diagnostics and
fault detection [4]; (e) exact replication of measured conditions [5].

Accurate tuning of the forcing functions is essential in all the above mentioned
cases and is rewarded in terms of some enhanced (sought) features and by
suppression of (unwanted, contaminating) others [3, 6, 7].

The actual force pattern acting upon a vibrating structure is related to both the
driving signal provided and the structural response [8]. Due to the dependency of
the applied forces on the structural dynamic properties, a very accurate local
model of the structure is essential for computing the required driving signals. Such
accuracy cannot be achieved when a model is experimentally obtained by means
of broad bandwidth measurements (the usual uncertainty in measured modal
damping is equal to the estimate itself).

The current problem is related to the estimation of an applied force from the
measured response [9] and can thus be classified as an inverse problem [10]. Inverse
problems are often more difficult (in some cases a unique solution is unobtainable)
to solve and are very sensitive to added noise and model mismatch.

It is well known that the tuning of dynamic force patterns is an iterative process
[6], in particular when electro-dynamic shakers are being used. Iterations are
required due to the uncertain dynamical behaviour of the combined
exciter–structure system and due to the non-linear behaviour of some components
in the force path. It has been shown [8] that, in some cases, the applied force
depends upon the structural response, thus, in effect a feedback loop that couples
the shakers through the response exists. This feedback coupling results in
deterioration in the signal to noise ratio and consequently an estimate of the
frequency-response function will be biased [8].

When one attempts to exactly tune the applied forces close to resonance
conditions, any small deviation in the measurements and consequently the applied
force may result in excess motion and hence damage the measurement equipment
or the structure. The need for a robust tuning strategy adjusting the external forces
in order to assure that those will not exceed an allowable limit is obvious.

Forces are tuned when the classical mode-appropriation technique is exercised.
This method is one of the very first modal-testing techniques [11] attributed to
Escher. This method, which is still widely used in the aircraft industry, has many
limitations and it assumes that perfectly linear structures are dealt with. In this
approach any non-linear effect of the forcing system is filtered out (ignored, mostly
using tracking filters) and thus are not considered at all. Active control methods
applied to structures in general and to rotating machinery in particular lack the
precision provided by off-line (or adaptive feed-forward) steady state based
methods. This lack of accuracy is mainly due to the constant adaptation of the
command signals [6], which is mostly done by means of a steepest-decent type of
algorithm. This inaccuracy is attributed to the large condition number (near
singularity) of the frequency response matrix combined with periodic and random
disturbances existing in rotating machines and to some degree to the non-linearity
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existing in all vibrating structures [12]. In order to achieve precise tuning of the
response and excitation forces, an off-line iterative method is required. Methods
that use non-parametric identification [6] were shown to be successful with a single
exciter but this approach lacks the precision a parametric-identification based
method has (given the correct parameterisation). When such a non-parametric
method is used to cancel non-linear effects, a non-realistic amount of
computational effort may be required.

The current paper describes a non-linear optimisation based approach divided
into several stages. In the first stage, a specially adapted equation-solver [13, 14]
is used and in a later stage a novel scheme exploiting adaptive perturbations
motivated by a linearised-model optimisation technique [15] is adopted so that fast
convergence and high accuracy are maintained. The proposed algorithm is
developed for tuning the amplitude and phase of a multi-shaker sine exciter system
and is suitable for tuning either the dynamic forces or the response taking into
account a certain type of non-linearity in the vibrating structure. The type of
structures considered in this work could be modelled as a polynomial (truncated
Volterra) model [16]. The case of rotating machinery is also partly covered by the
current method; in these systems the structure is assumed to vibrate due to other
effects apart from the applied forces. Non-linear structural identification is an area
where much analytical work is shown where the theories of Volterra and Winner
[16–21] prevail. On the other hand, no work attempts to identify a non-linear
model having several degrees of freedom. Partial identification of non-linear
systems is used here where a model has a limited set of frequencies, in a manner
similar to reference [16]. This partiality is achieved when harmonic excitation takes
place and the work reported in reference [18] has given some motivation for what
is done in this work.

The paper is structured as follows. In section 2 the problem at hand is
mathematically formulated and a descriptive explanation of the problem follows.
Section 3 analyses physical effects making this problem hard to solve where
singularity, cross coupling and non-linearity are dealt with separately. In section
4, the proposed tuning and identification algorithm is derived in detail, analysed
and compared to the traditional approach. A companion paper provides simulated
and experimental evidence for the success of the proposed algorithm, illustrating
the benefits of using the proposed approach via case studies. In this work only a
brief example showing a simulated case is discussed.

2. DEFINITION OF THE PROBLEM

In this section the problem to be solved is mathematically formulated. A
descriptive definition of the problem is provided and the anticipated sources of
difficulty are outlined. The practical configuration of a typical system with multiple
exciters is illustrated and the feedback, interaction and non-linear behaviour are
explained in physical and mathematical terms. It is shown that like most real-world
problems, the solution involves a succession of sub-problems, which individually
require a thorough understanding of the dynamic characteristics and the physical
behaviour dealt with.
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2.1.     

The problem is defined for a vibrating structure described by means of a
descretised linear equation of motion:

V: Mẍ(t)+Cẋ(t)+Kx(t)= u(t), M, C, K$RN×N,

x(t), u(t)$RN×1. (1)

Here u incorporates the effect of a set of P exciters. Those comply with the
following non-linear equations:

u(t)= s
NH

k=1

Fk (u(v, t), t)= s
P

k=1

Kk (x(t))+ d(t), (2)

where Fk ( · , · ) is the direct force vector due to the kth shaker, u(v, t) is the vector
of the observed parameters (functions), v= v(t) is a vector of input signals
(controlled inputs), Kk (x(t)) is a response-related (feedback), (also see below), and
d(t) is the force due to unmeasurable external disturbances.

The response related force (feedback term) has a pronounced effect when high
amplitudes of vibration are encountered. Kk (x(t)) is a symbolic expression for a
mathematical operator depending upon the source of feedback. The most common
source for a motion related force (feedback) is the back-electro motive force
(EMF) observed while using an electro-dynamic actuator. This effect counteracts
the desired force (the EMF opposes the currents induced in the shaker) when the
excitation frequency is close to resonance and is a strong function of the vibration
amplitude.

For the system described in equation (1) the following problem is sought to
be solved.

Problem 1: tune forces
Given an elastic structure described by equation (1) and given forcing vectors
described by equation (2), and provided that the structural parameters (M, C, K
and Fk ( · , · ), Kk (x(t))) are unknown, then find a vector of controlled signals—v(t),
such that the vector of measured forces u(t) is close, in terms of a distance function
J(u(t), ud (t)), to a vector of desired forces ud (t).

Mathematically a solution for:

v(t)=arg min
v(t)$V

J(u(t), ud (t)), (3)

is sought where V is the set of admissible solution vector functions (of time).
Remark. A similar problem can be stated for tuning the response, in this case

x(t) replaces u(t) and xd (t) replaces ud (t) in equation (3).
Problem 1 is very difficult to solve practically using the current state of the art

of non-linear systems identification algorithms especially, due to the large number
of parameters involved.

Indeed the solution of this problem necessitates a complete identification of the
non-linear functional relationship between the excitation u(t) and the driving
signal v(t) (input voltage). Furthermore, implicit identification of the excited
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structure V (see equation (1)) is necessary as it enters the functional relation of
u(t) in v(t) indirectly. In some applications, the external disturbance d(t) need (can)
also be identified and counter-acted (e.g., active cancellation of unbalance in
rotating machines).

In this paper, a simpler problem to the one stated above is being solved. For
the sake of simplicity and in order to be able to realise the developed algorithms
in practice, the dependency of the parameters u upon time is dropped, but the
driving signal v(t) remains a function of time. The last case represents, for example,
steady state or periodic operation.

Problem 2: tune forces: time-independent parameters
This problem is identical to problem 1 with the following parameterisation for the
desired excitation and input signals:

u(u, t)= s
nr

n=1

ĝn (u, t), v(t)= v(r, t)= s
nu

n=1

ĝn (r, t). (4a)

As is evident from equations (4, 4a) the same basis functions ĝn ( · , · ) are being
used for representing both the input signals and the resulted force (or response).
This allows one to relate more easily the input signal to the tuned quantity (force).

It is further assumed that there is a one-to-one correspondence between u(u, t)
and u such that u and r can be be uniquely identified when exact and sufficiently
informative measurements of u(u, t) and v(t) are provided. Additionally it is
assumed that ĝn (u, t) are given functions.

A natural selection for ĝn ( · , · ) would be harmonic functions where for linear
systems this selection will result in a simple correspondence between u(u, t) and
v(t) for each ĝn (u, t). In this work, the generation of periodic forces and the
excitation of harmonic waves are mainly addressed. For this reason, we restrict
ourselves to examples where harmonic functions are dealth with. Despite this
restriction the general parameterisation developed so far is still valid for all the
algorithms shown below. It is therefore assumed that the forces can be expressed
as:

ud (t)= u(ud , t)= s
nu

n=1

ud,n cos nvt+ s
2nu

n= nu +1

ud,n sin nvt. (5)

Similarly, the input signals are written as:

v(rd , t)= s
nr

n=1

rd,n cos nvt+ s
2nr

n= nr +1

rd,n sin nvt, (5a)

where ud,n (rd,n ) is the nth entry of the vector ud , (rd ).
In the last equation we chose the basis functions: ĝn (u, t)= ud,2n−1 cos nvt and

ĝ2n (u, t)= ud,2n sin nvt; n=1 · · · 2nu . These functions are linear in ud , thus, the
numerical search for a suitable excitation is greatly simplified.
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A distance function relating the desired and obtained forces via their
parameterisation is also defined:

J(u, ud )=
>u− ud>

>ud>
. (6)

The tuning process seeks to minimise J(u, ud ) by finding an appropriate vector of
input signals v(t). Since ud (t),u(ud , t) and u(u, t) are single valued functions of
u, minimisation of equation (6) leads to a reduced distance between ud (t) and
u(u, t) (in some vicinity of the optimum).

To assist in formulating the tuning algorithm a curve-fitting operator F( · )
providing u
 which is an estimate of u is defined. In a formal representation one
may write:

u
 =F(u(u, t)), r̂=F(v(r, t)), (7, 7a)

where the expression r̂d,F(vd (r, t))= rd is exact as it is not a measured quantity.
Substituting equation (7) into equation (6) gives

J(u, ud )=
>u
− ud>

>ud>
=

>F(u(u, t))− ud>
>ud>

, (8)

where > · > is user defined.

2.2.     

In this section the mathematical problem which was defined above is described
by a simplified (yet representative) schematic description of the proposed method.
A typical laboratory set-up is illustrated in order to make the analytical and the
descriptive arguments more tractable. In addition, some difficulties that typically
arise in such a configuration are outlined.

Figure 1. Experimental set-up showing the controlled signal v(r, t), the curve-fitted parameter
vector u
 representing the adjusted response y(t).
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Figure 2. A schematic model of the experimental set-up showing the input signals v(t), controlled
by the parameters r and the adjusted response y(t) (or force).

2.2.1. An example for a force-tuned system

The physical set-up of an existing experimental system controlled by the
proposed algorithm is depicted in Figure 1. This system consists of two actuators
and two controlled, response-related, variables (e.g., force or response).

The curve-fitted response, u
 =F( · ) (which may represent any quantity in the
dynamic system, e.g., forces or displacement), is related to the various forces via
equations (1, 2) and is fixed for a given r. Realistically, the external forces include
disturbances and are affected by inherent feedback [8]. In experiments where a
vibrating structure is excited by means of electro-magnetic exciters, an inherent
feedback may result in a combined non-linear dynamic system. The back
electro-motive force (back-EMF) yields a reverse voltage, which creates the
feedback in the shakers’ windings. The diagram in Figure 2 describes a linear
structure subject to external disturbances and to a non-linear feedback path.

The symbolic notation

u
 =F(y(t))= f(r, t) (9)

is used to demonstrate the implicit dependency of the curve-fitted parameter vector
u
 upon the controlled parameters r through the function f(r, t).

The response vector y(t) (and hence u
 ) is related to r via an unknown functional
relation f(r, t). This function represents a non-linear transformation between r and
u which results from the non-linear force path and feedback. It is assumed that
the non-linear part of the unknown model is concentrated in the feedback (vector)
functions, K1(x(t)), K2(x(t)) appearing in equation (2).

The existence of feedback may lead (even a linear one) to some difficulties (e.g.,
singular behaviour of f(r, t)); this fact will be demonstrated later where different
operating conditions of a vibrating system are analysed using the model
represented by Figure 2. The proposed method is developed in section 3.

3. THE TUNING ALGORITHM AND THE INPUT SIGNAL
OPTIMISATION PROCEDURE

A tuning algorithm which is considered successful must: (1) converge in a
reasonably short time, and (2) should by no means exceed (diverge momentarily)
from the allowed response limits.
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The proposed algorithm attempts to fit a truncated polynomial model [16],
which is in essence a truncated Volterra model. Consequently, the algorithm can
cope with some non-linear behaviour and with non-linear internal feedback. This
parameterisation is best suited for non-linear systems whose response frequency
spectrum can be described by a parametric model. The automatic perturbation
scheme that is used within the algorithm, requires smaller perturbations than any
alternative direct approach (e.g., steepest descent) since it is constantly trying to
enhance the measured signal to noise ratio rather than progress in the most
favourable direction. A descriptive analysis of the capabilities and the properties
of the algorithm are deferred to section 4.

3.1.      — 

In this section, the tuning method is developed as an adaptive (optimisation)
process aimed at overcoming most of the difficulties that were outlined in section 2.

The problem of finding both the functional relationship in equation (2) (e.g.,
f(r, t)) and the vector of desired parameters, r, is converted, using an appropriate
parameterisation, into a set of locally-linearised equations. These equations are
initially unknown and therefore a suitable process constructing both the unknown
equations and the sought solution, r, is employed. The process of finding an
optimal input signal is divided into sub-problems for which a robust solution
method is described. For this purpose, equation (9) relating the vector of desired
variables, F(y(t)) and the (adjusted) parameters, r is used.

The goal of the tuning process is to find some r̂= rd leading to u
 = ud (in fact
one obtains F(u(u
 , t))=F(ud (t)) and consequently u(u
 , t)= ud (t).

Mathematically one seeks a vector rd leading to u
 = ud which solves:

u
 = f(rd , t). (10)

Naturally, in real-world applications, equation (10) cannot be identically satisfied,
thus a tolerance, o and a convergence criterion need to be defined:

rd ${rE rE r̄, >u
 d − f(r, t)>E o>u
 d>}. (11)

Here r, r̄ are physical limits due to voltage limitation in the amplifiers or actuators.
Also, o is a user-selected tolerance.

Equations (10) or (11) suggests a numerical search algorithm attempting to
achieve the goal stated in equation (11). This is done via an iterative search
(minimisation) algorithm as described below.

3.1.1. Development of the tuning algorithm

Due to the unknown functional relation of u in r, a probing (or identification)
strategy needs to be employed. The proposed method is specifically designed to
overcome many of the problems, which exist in a conventional direct approach.

The approach suggested can be viewed as a method for minimising the following
error function:

J(r)= 1
2r

Tr, (12)
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where the residual vector r is defined for any estimate of r, as:

r= u
 d − f(r, t). (13)

Here u
 d represents the desired force or response vector estimated by a curve-fitting
procedure.

Ignoring temporarily the fact that the functional relationship, u
 = f(r, t) is
unknown, equation (10) is expanded in a truncated Taylor series:

u
 = u
 0 +Du
 = f(r0, t)+
1f(r0, t)

1rT Dr+O(>Dr>2), (14)

where O(>Dr>2) is the neglected residual.
Neglecting the second order residual term, one can write a simplified expression

for equation (14):

u
 = u
 0 +ADr, (15)

where

A=
1f(r0, t)

1rT . (16)

The goal is to achieve ud = u
 0 (which corresponds to r̂d = r̂0), thus, defining a
linearised set of equations:

ADr1 ud − u
 0. (17)

Knowledge of A and ud − u
 0, would result in a one-step solution for this sub-task
and consequently the updated parameters r= r0 +Dr could be computed directly.
Since neither f(r, t) and hence nor A (which approximates f(r, t)) are known, an
identification (probing) approach will be applied. Furthermore, A= 1f(r0, t)/1rT

is a function of r0, thus, every new iteration in which r0 receives the value of the
newly estimated r will yield a different model, A, and would give rise to a locally
linearised solution.

3.1.2. Solution strategy

The approach adopted in this work consists of two stages. In the first stage a
robust variation of the Krylov subspace approach [13, 14] for solving equation (17)
is being used providing an initial estimation of the model indicated by A
 0. In the
second stage, which is repeated until convergence, an optimal set of perturbation
vectors is deduced from the updated model. The true model is perturbed around
an operating point u
 0 = f(r0, t) to yield:

u
 − u
 0,Du= f(r0 +Dr, t)− f(r0, t). (18)

Equation (18) demonstrates how one can replace ADr in equation (17) by two
measurements: the first one at r0 and the second at r0 +Dr. The generation of a
set of probing vectors (Dr)k assists in obtaining an approximation for A and in
progressing towards the required solution.
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3.1.3. The proposed algorithm

Phase I: generating an initial model. The proposed method generates m
orthonormal search directions, Drk = rmaxwk , k=1 · · · m via the Arnoldi
procedure [13] creating a Krylov series [13]. During this process, a modified
Gram–Schmidt process is carried out in order to assure the independence of the
search directions and thus avoid numerical difficulties. The complete algorithm
[22] is given in Appendix C.

The algorithm assumes some initial values, e.g., rmax , r0, o and u0 = f(r0, t)
already described and consequently n measurements are performed

u
 k = f(r0 + rmaxwk , t), k=1 · · · n, (19)

where wk forms an orthonormal basis collected as columns of a matrix.

W,[w1 w2 · · · wm ]. (20)

Similarly the fitted response parameter-vectors are gathered (see equation (18)) to
yield:

U
 ,[Du1 Du2 · · · Dum ], (21)

At this point one is able to use the linearised model of equation (17) to write

ArmaxW=U
 , (22)

from which one may obtain an estimate of the model

A
 0 =
1

rmax
U
 W−1. (23)

Here one can use the fact that W−1 =WT is orthonormal by construction (see
Appendix C). In addition, the modified input vector r0 +Dr is deduced from

Dr= rmaxWU
 −1(ud − u0). (24)

Phase II: the main algorithm. Given an estimate of the model A
 0, one may form
a SVD (singular values decomposition)

A
 0 = s
n

i=1

sx i ûi v̂T
i . (25)

Given the SVD, one is able to choose a set of perturbation vectors in the form:

wi =
1
ŝi

v̂i . (26)

The set of perturbation-vectors is applied to the real system and each measurement
is symbolised by (see equation (19)):

u
 k =A(r0 + rmaxwk )+ ok , (27)

where ok represents noise or model uncertainty.
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Collecting all the measurements in one matrix, one may write, using equations
(26) and (27),

U
 = rmaxAV
 S
 −1 +E. (28)

Here E=[o1 o2 · · · on ].
Finally, temporarily neglecting the effect of noise, an updated approximation

for the model is constructed

A
 =
1

rmax
U
 S
 V
 
T. (29)

An increment towards the desired response can be computed according to
equation (24)

Dr= rmaxV
 S
 −1U
 −1(ud − u
 0). (30)

If equation (11) is not satisfied, replace A
 0 with A
 and r0 with r0 +Dr and repeat
equations (25) to (30)

Remark. The chosen perturbation in the ideal (noiseless) case would yield

uk = rmaxuk , (31)

and therefore the numerical inversion of U
 (which needs to be performed in
equation (30)) is optimally conditioned having a condition number equal to unity.

Proof: optimality of perturbations without noise. By orthogonality of the singular
vectors vT

i vk = di,k ,

uk =A
 0rmaxwk = s
n

i=1

siuivT
i rmax

1
sk

vk = rmaxuk . (32)

Therefore U
 = rmax [u1 u2 · · · un ] which has perfect conditioning by construction
of the SVD.

3.2.    —   

In this section the convergence properties of the proposed algorithm with respect
to the signal to noise ratio are analysed. The difficulties, which arise due to
singularity and due to measurement noise, affect the required perturbation step.
This is shown explicitly in this section where the relationship between the degree
of singularity of the system, the amount of measurement noise (model uncertainty)
and the required perturbation step is developed. Expressed mathematically this
relationship adds much understanding to the problem at hand and provides the
motivation for the proposed method.

It is assumed that the system can be described via equation (17), e.g., by u=Ar.
As will be shown in section 4, this relation is valid both for linear as well as some
non-linear systems.
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3.2.1. Determination of the minimal step size for the direct approach

An important question, which arises when studying any algorithm is whether
stability can be guaranteed and under what circumstances will the algorithm
converge. One usually wishes to induce the minimal amount of perturbation to
the system and indeed the minimal required perturbation size that guarantees
convergence is found below.

According to the algorithm which is proposed above, a set of orthogonal
perturbation vectors, Dr1, Dr2, . . . is generated. All the generated vectors possess
the same Euclidean length, rmax (the step-size), and the response to each of these
input perturbations—u
 1, u
 2, . . . is estimated from measurements.

The estimated model of A indicated by A
 k , is generated (in every iteration) from
these data (in fact the inverse model is approximated implicitly).

Once the input signal (relative to the previous iteration) is updated using

(r̂d )i =(r̂d )i−1 + (Dr̂d )i−1 (33)

and is applied to the system, an estimate of the desired response can be obtained:

(u
 d )i =A(r̂d )i−1 +A(Dr̂d )i−1 + o=(u
 d )i−1 +A((r̂d )i −(r̂d )i−1)i + o. (34)

Here o represents the uncertainty in the estimate (e.g., measurement noise).
Using equations (23, 27), one can form an estimate of the system’s model:

A
 k =(U
 +E)
1

rmax
WT, (35)

where U=[u
 1 − (u
 d )k−1 u
 2 − (u
 d )k−1]; W=[Dr1 Dr2] and E is an error matrix
representing the identification uncertainty which is directly related to o.

Using equation (35), one can estimate the required input signal for the (k+1)th
iteration.

(r̂d )k+1 = (r̂d )k +(Dr̂d )k+1 = (r̂)k +A
 −1
k (ud −(u
 d )k ). (36)

This input signal results in an estimate of the response ud :

(u
 d )k+1 =A(r̂d )k+1 + o=A(r̂)k +AA
 −1
k (ud −(u
 d )k )+ o (37)

or

(u
 d )k+1 = (u
 d )k +AA
 −1
k (ud −(u
 d )k )+ o (38)

and rearranged,

(u
 d )k+1 = [I−AA
 −1
k ](u
 d )k +AA
 −1

k ud + o. (39)

Subtracting ud from each side of the equality, one obtains an evolutionary equation
for the deviation from the desired response {(u
 d )k+1 − ud}:

({u
 d )k+1 − ud}=[I−AA
 −1
k ]{(u
 d )k+1 − ud}+ o. (40)
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This equation reveals much about the convergence properties of the direct and the
proposed approaches. The algorithm will constantly improve (reduce the distance
to the solution) at every iteration if;

(z2k(A)+1)
>E>
s� (A)

E rmax . (41)

Proof: see Appendix B.
The stability analysis, which was conducted above, provides an expression for

the required perturbation size. This expression is in fact a lower bound under
which no convergence (i.e., divergence) will occur (on average). The solution of
the inverse problem at hand requires a large perturbation step in order to achieve
convergence. It can also be concluded that the deviation from the solution (error)
is very sensitive to the least favourable direction dominated by smin (A)0 s� (A).

Equation (41) demonstrates that the effective signal to noise ratio, >E>/s� (A), is
controlled by both the degree of singularity of the problem at hand and by the
uncertainty (noise). The fact that the least favourable direction has such an
important effect is not intuitive and has tremendous importance for identification
and control algorithms.

3.2.2. Determination of the minimal step for the proposed method

In this case, the analysis follows immediately from equation (39) where the
estimate from equation (29) is used to obtain:

I−AA
 −1
k =AA−1 −AV
 kS
 kU
 −1

k =AA−1 − rmaxAV
 kS
 −1
k (rmaxAV
 kS
 −1

k +Ek ).

(42)

Convergence is guaranteed if

>(u
 d )k+1 − ud>
>(u
 d )k − ud>

E 1, (43)

which, according to equation (39) (and Appendix B), will occur if >I−AA
 −1
k >Q 1

or if

>AA−1 − rmaxAV
 kS
 −1
k (rmaxAV
 kS
 −1

k +Ek )>E 1. (44)

Performing some simplification one arrives at

>AV
 kS
 −1
k >BS
 kV
 T

k A−1 −0AV
 kS
 −1
k +

1
rmax

Ek1
−1

BE 1. (45)

Finally, using the same procedure as shown in Appendix B, one obtains:

rmax e >S
 kV
 T
k A−1>>Ek>(1+z2>S
 kV
 T

k A−1>>AV
 kS
 −1
k >).

(46)

Convergence of the model, i.e., obtaining A=U
 kS
 kV
 T
k would yield,

>S
 kV
 T
k A−1>=1, >AV
 kS
 −1

k >=1. (47)
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It can therefore be deduced (substituting equation (47) into equation (46)) that the
proposed algorithm requires an optimal (minimal) perturbation size of
rmax e >Ek>(1+z2) to guarantee convergence. The proposed algorithm
iteratively improves the estimate of the model and consequently the perturbation
sequence will improve towards the ideal conditioning in equation (47).

3.2.3. Advantages of the proposed algorithm

In lieu of the above analysis, one can assess and describe the benefits of the
proposed algorithm. In the proposed algorithm, one seeks to minimise the
modelling error >A−A
 k>= >E>1/rmax , by using the smallest possible perturbation
size, rmax (minimal response levels are desired in non-destructive testing). The
following two main points contribute to the ability of the algorithm to fulfil the
abovementioned goals. (1) The input signals form an orthogonal basis, therefore,
the numerical errors which may result from the inversion of the signal subspace
W (see equation (23)) are prevented (this is because an orthogonal matrix has
perfect numerical conditioning with respect to inversion). (2) The algorithm
constantly perturbs the least favourable direction (in the parameters space),
therefore, the signal to noise ratio is maximised and optimal convergence
properties are obtained. This property is achieved by exploiting the information
contained in the right singular vectors V
 k (computed in equation (29)). The
singular vectors belonging to the smallest singular values span the null-space of
the response and therefore contain the least favourable direction. By using a direct
approach (rather than the proposed algorithm), there will be a need to increase
the response levels so that the projection upon the weak direction (again in the
parameter space) rises above the noise level. The proposed method, on the other
hand, allows one to use a smaller perturbation size and consequently lower
response levels are obtained. A more illustrative example is provided in a
companion paper [23].

4. SOME ANTICIPATED DIFFICULTIES AND THE MODELLING APPROACH

In this section some of the anticipated difficulties arising during the tuning
process are described in some detail. The model of the non-linear feedback terms
under harmonic inputs is developed and its representation in a linearised form is
explained.

4.1.     

In this part, the difficulties arising when the response level is high are discussed.
High response levels are encountered, for example, when one seeks to excite a
single vibration mode. This is usually achieved by choosing an excitation frequency
close to the relevant natural frequency. When the level of motion is high, an
electro-dynamic or electro-magnetic shaker creates a force which is greatly
influenced by the large amplitudes [24]. Close to resonance, the force produced by
a multi-exciter system might be dominated (due to the dependency upon the
response) by the associate vibration mode-shape. In such cases it is therefore



V

+

U

X

Kf

H(  )
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difficult to produce a force which has components that are spatially orthogonal
to the force caused by this effect.

The adjustment of the response near resonance, does not pose a severe problem
when one seeks to produce a vibratory mode [11, 25], but the exact tuning of the
force in such a regime may prove difficult [3]. This difficulty is due to reasons stated
in reference [10] and for reasons stated below.

The displacement (velocity) dependent forces creates a feedback path [8] which
is analysed here in the frequency domain.

The Fourier-transformed response of V (see equation (1)) can be expressed as:

X(v)=H(v)U(v), (48)

where U(v) is the applied force X(v) the response and H(v) the transfer matrix.
The displacement (or velocity) dependent force is shown schematically in Figure

3. Due to the (vector) static feedback having the gain-matrix Kf (see Figure 3), the
actual force U(v) resulting from the input signal V(v) becomes:

U(v)=V(v)+Kf X(v). (49)

Using equation (48) one can express the total applied force as:

U(v)=V(v)+Kf H(v)U(v), (50)

which shows how the exerted force is affected by the structural dynamics through
the feedback term.

Introduction of equation (50) into equation (48), results in:

X(v)=H(v)(V(v)+Kf X(v)), (51)

or, rearranging

(I−H(v)Kf )X(v)=H(v)V(v). (52)

Equations (48)–(52) allows one to analyse the effects of feedback when the
response or the forces are to be adjusted.

Figure 3. Block diagram of the force-feedback structure.
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4.1.1. The effect of feedback under high response levels

When the excitation frequency v is indeed close to one of the natural
frequencies, vr , the frequency response matrix is dominated by the associated
mode (the rth) and can be written as [9]:

H(v)1 frf
T
r

v2
r −v2 + izrvrv

(53)

where fr , vr , zr are the mode shapes, modal damping and natural frequency
respectively.

Clearly from equations (50) and (53) one can see that when v is close to vr ,
both the force and the response are dominated by one of the eigenvectors.
Consequently their spatial directionality is dictated, i.e.,

X(v)Afr U(v)AKf fr . (54)

Any attempt to create response or force patterns considerably different from this
spatial distribution, requires large input signals as this direction is greatly amplified
by the small denominator of equation (53). In particular, when the desired force
is almost orthogonal to this pattern, large V(v) (see equation (50)) is required in
order to overcome the dominating Kf X(v) term. This analysis is valid for any kind
of feedback matrix, in particular for a diagonal one (i.e., the feedback is local to
the actuator). When the feedback couples several degrees of freedom, one obtains
further complications.

4.1.2. Cross coupling due to feedback

Due to feedback, a change in the force at one location could greatly influence
the forces applied at other locations. This can be demonstrated by expressing the
change in force due to a change in the control signal, V(v). From equation (50)
one has:

DU(v)=DV(v)+Kf H(v)DU(v), (55)

where DV(v) represents changes in V(v) and DU(v) the resulted change in U(v).
Rearranging equation (55), one obtains:

(I−Kf H(v))DU(v)=DV(v). (56)

Very close to resonance vr 1v which results in (see equation (53)):

H(v)1 −i
zrv

2
r
frf

T
r . (57)

Therefore, equation (56), becomes:

0I−
i

zrv
2
r
Kffrf

T
r1DU(v)=DV(v). (58)

The coefficient matrix multiplying DU(v) in equation (58) is no longer diagonal
(as in the non-feedback case), therefore, a change of one force might influence
other forces.
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It is clear that for lightly damped structures where a high-gain feedback exists,
the functional relationship between the force and the input signals is considerably
modified. This equation is analysed in a companion paper [23] via several
examples.

In this work the actual relationship between the input signal and the resulting
forces is taken into account. In this way the algorithm automatically considers the
effect of cross coupling between the various forces and thus the effect of feedback
is automatically compensated.

Further complications can appear near resonance due the rank deficiency of the
coefficients matrix in equation (58). This situation can occur when the damping
is very small and may result in a rank one-coefficient matrix. The proposed
algorithm handles the near-singular case by generating perturbations in the least
dominant directions and thus obtaining the best possible estimate of the model.

4.1.3. Non-linear force path and feedback, modelling and compensation

In reality the force path may incorporate non-linear elements, e.g.,
electromagnetic devices. In this work, an attempt is made to accommodate a class
of non-linear feedback functions and model them by a vector–Taylor series.
Assuming that the function K1( · ) can be developed in such a series (see reference
[16], pp. 34–36), gives:

K1(x(t))1 s
i

1K1

1xi (t)
xi (t)+

1
2

s
i

s
j

12K1

1xj (t) 1xi (t)
xi (t)xj (t)

+
1
6

s
i

s
j

s
k

13K1

1xi (t) 1xj (t) 1xk (t)
xi (t)xj (t)xk (t)+ · · · . (59)

The effect of the non-linear feedback can be cancelled in this case by subtracting
the feedback functions, Ki ( · ) from the force actually applied. The power terms
greater than one are non-zero in equation (59) only when non-linear effects exist.
Those terms can be cancelled by counteracting them in the controlled signal.
Examining equation (2) one can show that a desired force vector V(t) will be
achieved if one chooses v such that:

s
P

k=1

Fk (u(v, t), t)=V(t)− s
P

k=1

Kk (x(t))− d(t). (60)

The result of this force is essentially an exact linearisation of the system since the
combined force becomes a linear function of x(t).

It is worth mentioning that in some cases, the disturbance, d(t), can be estimated
and cancelled. For example, in rotating machines the unbalance can be estimated
and cancelled by appropriate external forcing synchronous to rotation.
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Successful tuning for which equation (60) holds, will yield (by substituting
equation (60) into equation (2)):

u(t)=V(t) (61)

Such a cancellation requires a complete identification of the coefficients in
equation (59). This task can be formulated in a straightforward manner for
harmonic input signals.

4.2.      -   

It can be shown that when the applied signals are sinusoidal, the power terms
in equation (59) result in higher harmonics in the feedback terms (see also reference
[16], chapter 5). Those terms can be identified and their unknown amplitudes could
be added to the identified vector of unknown signal parameters, r.

For example, in the dual shaker case (see Figures 1 and 2) one has, as in
equation (5a):

v(r, t)=

s
m

n=1

r4n−3 cos nvt+ s
2m

n=m+1

r4n−2 sin nvt

s
m

n=1

r4n−1 cos nvt+ s
2m

n=m+1

r4n sin nvt

G
G

G

G

G

F

f

G
G

G

G

G

J

j

=0r1 cos vt+· · ·+ r6 sin 2vt+· · ·
r3 cos vt+· · ·+ r8 sin 2vt+· · · 1, (62)

where in this case one has r$R8 · m and generally for tuning a system with ns shakers
and including nh harmonics for every shaker there are 2nsnh parameters, ri .

A non-linear force path, which can be described by equation (59), can thus be
handled under hamonic excitation. In this case the various harmonics should be
identified (measured and curve-fitted) and then set to zero (in case those harmonics
are to be suppressed). This strategy is demonstrated in section 5 and in a
companion paper [23] for both simulated and for experimentally controlled
structures.

4.2.1. Representing the non-linear relation under harmonic excitation

As shown above, the non-linear behaviour can be approximated as a truncated
Taylor series, which gives rise to higher harmonics in the applied force u(t). Use
is made of the curve-fitting operation in equation (7) to obtain equation (5) where
the sine and a cosine coefficient for the ith measured force are found within the
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fitted vector u
 and are indicated by ui
sin or ui

cos for convenience. Using this
parameterisation one can approximate equation (7) using equation (17) as:

u1
cos A1,1

cos,cos A1,1
cos,sin · · · A1,Nnl

cos,sin r1
cos

u1
sin

··· A1,1
sin,sin A1,Nnl

sin,sin r1
sinG

G

G

F

f

G
G

G

J

j

G
G

G

K

k

G
G

G

L

l

g
G

G

F

f

G
G

G

J

j

···
3 ···

···
, (63)

uNnl
sin ANnl ,1

sin,cos · · · ANnl ,Nnl
sin,sin rNnl

cos

where up
cos cos pvt and up

sin sin nvt are the various harmonics for the pth measured
response (or force).

Equation (59), represents a local approximation which is valid only at the
specific operating point, therefore equation (63) represents a linearisation of the
type:

Ai,j
sin,sin =

1ui
sin

1rj
sin

, (64)

where cos, sin subscripts represent the sine–cosine coefficients and i, j superscript
relate the ith harmonic in the response to the jth harmonic in the excitation.

The reader’s attention is attracted to the similarity of the combined equations
(59) and (63) to the so-called Volterra series. It can be shown [16, 17] that the single
harmonic excitation part of the higher-order frequency response functions are in
fact estimated. The approach presented has a distinct advantage over other
Volterra-like identification schemes as the estimate is constantly updated until
sufficient convergence is achieved. The converge is verified by comparison with the
actually measured response of the system.

4.3.         

As shown above, both the sine and cosine coefficients for every degree of
freedom (and every harmonic in the non-linear case) are extracted. It is clear that
there is a redundancy with respect to what is usually considered for linear systems.
Indeed when the complete system consisting of the shakers and of a perfectly linear
structure is considered, the minimal number of measurements required for
identification of the frequency responses is (theoretically) equal to the number of
actuators.

In the linear case, both amplitude and phase can be extracted from one
measurement, as shown below. It is also shown here that this approach is not
suitable for a linearised (non-linear) structure–shakers model and more
measurements are required in order to identify a more general model. Although
the assumption of an almost linear structure may lead to reasonably accurate
identification, the resulting model is not sufficiently accurate for precise
computation of the required forcing signals (for which a model inversion is
requires).
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Figure 4. Nominal part of the simulated sytem.

A linear system represented by its complex frequency response function
H(v)= =H(v)= eif has the a steady state response of the form:

y= ucos cos vt+ usin sin vt= =H(v)=(rcos cos (vt+f)+ rsin sin (vt+f)), (65)

where the input signal is V= rcos cos vt+ rsin sin vt while y is the output.
It can be shown (see Appendix A) that

0ucos

usin11$ HR

−HI

HI

HR%0rcos

rsin1. (66)

Equations (65) and (66) assume that the identified system is perfectly linear while
in fact a general linearised relation should be expressed as:

0Ducos

Dusin11$a11 a12

a21 a22%0Drcos

Drsin1. (67)

A perfectly linear system can be identified by means of a single measurement
where one chooses arbitrarily rcos , rsin and measures ucos , usin to obtain:

HR =
usin + ucos

2rcos
; HI =

ucos − usin

2rcos
. (68)

On the other hand, when a non-linear system is dealt with, the special structure
of equation (66) is inappropriate and the more general equation (67) has to be
used. In the linear case, the special relation in equation (66) is explained by the
fact that the real and imaginary parts of the frequency response function are a
Hilbert-transform pair [26].

For a non-linear system, four independent parameters (see equation (67), aij

i, j=1, . . . , 2) need to be identified, thus, at least two independent measurements
(two independent rcos , rsin combinations should be used) are required (to obtain
a scalar linearised model).

This idea is further developed for a non-linear multi-exciter model and is in fact
employed in equation (63). An interesting feature of the modelling used in
equation (63) is that the structure of equation (66) can be extended to systems
described by Volterra series.

A multi-shaker response system will have similar properties when the
input-signal output-force are considered. In this case, 2 by 2 blocks having similar
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Figure 5. Tuned steady state response using one harmonic in the excitation.

structure to equations (66) and (67) can be identified (see Appendix A). This
special structure will be demonstrated in the example provided in section 5. Any
deviation from this structure (of equation (66)) implies that some (asymmetric)
non-linearity exists, as is demonstrated by simulation in section 5 and
experimentally in an additional work [23].

5. ILLUSTRATIVE EXAMPLE

In this section the proposed algorithm is applied to a simulated system. The
results are plotted and briefly discussed. The example shown here is based on a
simulation of a non-linear system. More detailed examples and experimental case
studies are deferred (due to lack of space) to a companion paper [23].

The nominal system (without the non-linear feedback terms) is depicted in
Figure 4.

The simulated system can be described by equation (1) where M, K are
determined from Figure 4 using the values of m=0·3, k1 =8·1, k2 =35·8 and
C=0·2M+0·003K. The forcing term u(t) is defined according to equation (2) in
addition to some non-linear feedback terms.

T 1

A-matrix for case 1 (see equation (37))

0.5528 0.1633 −0.4279 0.1603
−0·1387 0·5040 −0·1406 −0·4770

−0·4250 0·1574 0·5552 0·1612
−0·1415 −0·4725 −0·1382 0·5071
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Figure 6. Tuned steady state response using six harmonics in the excitation.

The equation of motion of the structure is:

Mẍ(t)+Cẋ(t)+Kx(t)=−x(t)−3x3(t)+ s
NH

k=1

rsin
k sin (kvt)+ rcos

k cos (kvt),

(69)

Figure 7. Tuned amplitudes for the various harmonics.
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where rsin
k , rcos

k $R2×1 are tuned in order to achieve the desired response, expressed
as:

usin
1 =00·2

0 1, ucos
1 =0 0

0·21, up
k =0 [kq 1, p${sin, cos}. (70)

5.1.  1:      

In the first simulation run, only one harmonic was used in the forcing signal
(NH=1). The required response plotted in the x1, x2 plane would ideally look like
a perfect circle (this can be deduced from equation (70)). Due to the non-linear
behaviour, higher harmonics were excited and the results shown in Figure 5 indeed
indicate a distortion.

The identified matrix A is given in Table 1. This matrix shows that equation (66)
does not hold (or equation (A(6)) and the more general equation (67) is required
for the 2×2 blocks. For this case full convergence was achieved for the first
harmonic of the response, but the effect of the higher harmonics obviously affect
the results and so an imperfect result was obtained.

5.2.  2:   

An additional simulation was conducted for the same system where in this case
six harmonics were tuned. The results are depicted in Figure 6. This figure clearly
shows an obvious improvement over the single harmonic case (Figure 5). The
algorithm converged in both cases in three steps, but due to the larger number of
parameters, case 2 required a larger number of perturbation runs. The tuned
parameters are shown inFigure 7. In this figure the importance of the oddharmonics
and in particular the third one is clearly shown and the effectiveness of the proposed
algorithm in cancelling the non-linear effects was demonstrated. An additional
study, which includes several experimental cases, is shown in a companion paper
[23].

6. CONCLUSIONS

In this paper a novel approach for tuning a multi-exciter system is introduced.
The method takes into account various difficulties, such as, model uncertainty,
feedback, singular models and inferior signal to noise ratios. By creating a high
order model, which describes a non-linear system subject to harmonic forcing, the
method adaptively tunes the forcing signal until the desired excitation or response
is achieved. The conditions under which convergence of the algorithm is
guaranteed are developed in this paper. The algorithm attempts to maximise the
effective signal to noise ratio and allows for smaller perturbations and lower
response levels while still guaranteeing convergence. A simulation shown in this
paper illustrates the capabilities of the proposed algorithm in exact tuning of a
desired response and in cancellation of non-linear effects. The presented method
has further potential in other types of inverse problems where an adaptive
approach is required in order to maximise the amount of extracted information
with respect to noise and uncertainty.
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APPENDIX A

In this appendix the special structure of a linear system appearing in the
identified matrix, A, is developed. This structure is no longer suitable for
non-linear (and for linearised) structures thus a need for a larger number of
perturbations is illustrated.

First analyse a single-input single-output linear system where the input (voltage)
is: V= r1 cos vt+ r2 sin vt and the resulted response is F= u1 cos vt+ u2 sin vt.
This linear system can be described by means of its transfer Ha = =H= ejf, therefore,
in this case, the output is related to the input (voltage) by:

u= =H=(r1 cos (vt+f)+ r2 sin (vt+f)) (A1)

or

u= =H=((r1 cos vt+ r2 sin vt) cos f+(r2 cos vt− r1 sin vt) sin f). (A2)

Making use of the identities, HR = =H= cos f; HI = =H= sin f, one has

u=(HRr1 +HIr2) cos vt+(HRr2 −HIr1) sin vt. (A3)

Hence,
u1 = (HRr1 +HIr2); u2 = (HRr2 −HIr1). (A4)

From equation (A4) one can finally observe that:

1u1

1r1
=HR =

1u2

1r2

1u1

1r2
=HI =−

1u2

1r1
. (A5)

Developing a small perturbation of the response in a truncated Taylor series gives:

DF1Fcos cos vt+Fsin sin vt101u1

1r1
Dr1 +

1u1

1r2
Dr21 cos vt

+01u2

1r1
Dr1 +

1u2

1r2
Dr21 sin vt, (A6)



. 26

G
G

G

K

k
G
G

G

L

l
0Fcos

Fsin11

1ucos

1rcos

1usin

1rcos

1ucos

1rsin

1usin

1rsin

0Drcos

Drsin1. (A7)

Finally substituting equation (A5) into equation (A6) and comparing terms gives
equation (66)

0Fcos

Fsin11$ HR

−HI

HI

HR%0Drcos

Drsin1. (A8)

Equation (A6) can be extended for the dual-exciter dual-response linear system
depicted in Figure 1.

ua
cos Ha,a

R Ha,a
I Ha,b

R Ha,b
I ra

cos

ua
sin −Ha,a

I Ha,a
R −Ha,b

I Ha,b
R ra

sinG
G

G
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G
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j

G
G

G
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k
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G
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l

G
G

G

F

f

G
G

G

J

j
ub

cos
=

Hb,a
R Hb,a

I Hb,b
R Hb,b

I rb
cos

, (A9)

ub
sin −Hb,a

I Hb,a
R −Hb,b

I Hb,b
R rb

sin

where clearly for this case

Ai,j
cos,cos =

1ui
cos

1rj
cos

=Hi,j
R and Ai,j

cos,sin =
1ui

cos

1rj
sin

=Hi,j
I etc.

It is clear that columns 2 and 4, for example, can be calculated from columns 1
and 3. Therefore, in this case only two input vectors (of input-voltage signals)
should suffice. Here HRab + jHIab = ua /rb : the transfer function between rb and ua .

APPENDIX B

In this appendix equation (41) is formally proved. In order to assure stability
and convergence it is required (given equation (40)) that:

>(u
 d )k+1 − ud>
>(u
 d )k − ud>

E 1. (B1)

Hence, it is required

>I−AA
 −1
k >Q 1 (B2)

or

>AA−1 −AA
 −1
k >Q 1. (B3)

Using the results from reference [27, equations (1.4.9) and (1.4.12)] gives

>A>>A−1 −A
 −1
k >E >A>>A−1>2 z2>A−A
 k>

1− >A−1>>A−A
 k>
E 1. (B4)
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From equation (35) one can deduce that

>A−A
 k>= >E> 1
rmax

(B5)

and therefore equation (B4) becomes

k(A)
s� (A)

z2>E> 1
rmax

1−
>E>

rmaxs� (A)

E 1. (B6)

The perturbation size, rmax , which guarantees stability of the proposed
algorithm, is bounded by:

k(A)
s� (A)

z2>E>

1−
>E>

rmaxs� (A)

E rmax . (B7)

Assuming that 1q >E>/rmaxs� (A) [27, equation (1.4.9)] one finally obtains:

(z2k(A)+1)
>E>
s� (A)

E rmax . (B8)

APPENDIX C

In this appendix, the initialisation part of the algorithm is provided. This part
is carried out when there is no initial model therefore the perturbation sequence
needs to be constructed from scratch.
Part I: probing, generating a set of measurements and a basis for the solution using
the Arnoldi process type of procedure.

Form basis (Indirect Identification)

Given: rmax , r0, e

STEP I: compute u0 = f(r0, vt) take initial measurement

v1 = ud − u0, w1 =
v1

>v1>
, k=1

STEP II: A: while >ud − uk−1>E eud and kEm
uk = f(r0 + rmaxwk , vt) take one measurement.
vk+1 = ud − uk

B: repeat q=1 · · · k−1 orthogonalisation.

vk+19vk+1 − (vT
k+1wq )wq

B: end

wk+1 =
vk+1

>vk+1>
, Duk = uk − u0, k= k+1

A: end


